

Storm 1.8 kW Prototype Wind Turbine Subcontractor Design Review

Small Wind Turbine Project

Principal Investigator: David Calley

Technical Monitor: Jim Green

Southwest Windpower

"Renewable Energy Made Simple"

Design Goals

Wide market appeal using the following design objectives

- 1. Efficient low wind speed performance
 - Over 5000 kwh/year @ 5.4 m/s
- 2. Dramatically reduced installed system cost
 - High volume "appliance" manufacturing design
 - Under \$3,000 installed cost
 - COE under national average without subsidy (5.4 m/s)
- 3. Quiet
 - Not noticed noise in urban environments
- 4. Conform to standard local zoning restrictions
- 5. Inoffensive, pleasant appearance
- 6. Very high volume manufacturing

Monopole tower

- Tapered thin-wall steel pole
- 10.6 meter hub height
- Small footprint
- Aesthetic and unobtrusive
- Well developed manufacturing and distribution
- Designed to fit into standard local zoning restrictions
- Quick and low cost installation

Alternator Design Goals

- Near zero startup torque
- High maximum (stall) torque
- High Efficiency
- Low Noise
- Ease of Manufacture

Storm Alternator

Design

- Configuration developed just for Storm,
 - Practical to produce in high volume
 - Essentially no starting torque
 - very high stall torque
 - Good efficiency
 - Slotless,
 - Encapsulated

- Bore dimensions Ø358 mm by 62 mm stack length
- 42 pole rotor, 8mm thick magnets, 40 MGOe
- Torque -so far too high for us to test
- Voltage ~200 open circuit

Stall control

Power, efficiency and rpm

Uncorrected data at 6,800 ft

Corrected Data

- •275 PRM max
- •Near .4 net electrical Cp
- •145 m/sax tip speed
- •Flat power at 1800 rpm

Nacelle

- Designed for Die cast aluminum
- Excellent heat flow
- EMI shielding
- Sealed

Yaw Assembly

- Production design likely different
- Universal "AIR" style clamp
- Molded high volume production design
- Integrated sliprings

Blades

- S822, S823 NREL airfoils
- Low noise and high performance
- Consistent quality, high volume production
- Prototype test units of fiberglass, production will be injection molded
- Multi-part injection mold blade

A few achievements of Storm development program

- Stall control fully realized (originally developed for AIR-X)
 - No added cost
 - Quiet high wind speed operation
 - Leveling of power curve at desired level
- Rotor Cp of 0.46 on a small wind turbine
- COE looks competitive with conventional sources (new for a small wind turbine)
- Slotless, high efficiency wind turbine alternator
- Integrated Inverter

Primary contract goals remaining

- Inverter testing on prototype in field tests
- DF-20 and Certification
- Optimizing control algorithm in region 2
- Tower cost work
- Final manufacturing designs
- Manufacturing tooling

Southwest Windpower

Project cost share to finish project

Conclusion

- Much work remains to finish testing and final designs
- Much work remains to tool and begin production
- We plan to begin production shipments in 2005
- Deeply grateful for NREL's support and for the dedicated staff at Southwest Windpower

Work for Peace...